load_table#

load_table(filename: str | Path, sep: str | None = None, reader: Callable | None = None, digits: int = 4, space: int = 4, title: str = '', missing_data: str = '', max_width: int = 10000000000000000159028911097599180468360808563945281389781327557747838772170381060813469985856815104, index_name: str | None = None, legend: str = '', column_templates: dict | None = None, static_column_types: bool = False, limit: int | None = None, format_name: str = 'simple', skip_inconsistent: bool = False, **kwargs) Table#
Parameters:
filename

path to file containing a tabular data

sep

the delimiting character between columns

reader

a parser for reading filename. This approach assumes the first row returned by the reader will be the header row.

static_column_types

if True, and reader is None, identifies columns with a numeric/bool data types from the first non-header row. This assumes all subsequent entries in that column are of the same type. Default is False.

digits

floating point resolution

space

number of spaces between columns or a string

title

as implied

missing_data

character assigned if a row has no entry for a column

max_width

maximum column width for printing

index_name

column name with values to be used as row identifiers and keys for slicing. All column values must be unique.

legend

table legend

column_templates

dict of column headings or a function that will handle the formatting.

limit

exits after this many lines. Only applied for non pickled data file types.

format_name

output format when using str(Table)

skip_inconsistent

skips rows that have different length to header row