Loading a single sequence from a file#

Note

These docs now use the new_type core objects via the following setting.

import os

# using new types without requiring an explicit argument
os.environ["COGENT3_NEW_TYPE"] = "1"

In this case, the filename suffix is used to infer the data format.

from cogent3 import load_seq

seq = load_seq("data/mycoplasma-genitalium.fa", moltype="dna")
seq
0
NC_000908.2 Mycoplasmoides genitalium G37, complete sequenceTAAGTTATTATTTAGTTAATACTTTTAACAATATTATTAAGGTATTTAAAAAATACTATT

DnaSequence, length=580,076 (truncated to 60)

Warning

If a file has more than one sequence, only the first one is loaded.

seq = load_seq("data/brca1-bats.fasta", moltype="dna")
seq
0
FlyingFoxTGTGGCACAAATGCTCATGCCAGCTCTTTACAGCATGAGAAC---AGTTTATTATACACT

DnaSequence, length=3,009 (truncated to 60)

Note

It’s also possible to load a sequence from a url.

Loading an alignment from a file or url#

Loading aligned sequences#

Any file in which the sequences have exactly the same length can be loaded as an alignment.

from cogent3 import load_aligned_seqs

aln = load_aligned_seqs("data/long_testseqs.fasta", moltype="dna")
type(aln)
cogent3.core.new_alignment.Alignment

Note

The load functions record the origin of the data in the info attribute under a “source” key.

aln.info.source
'data/long_testseqs.fasta'

Loading unaligned sequences#

Files containing sequences that may differ in length can be loaded using load_unaligned_seqs(), which returns a sequence collection.

from cogent3 import load_unaligned_seqs

seqs = load_unaligned_seqs("data/long_testseqs.fasta", moltype="dna")
type(seqs)
cogent3.core.new_alignment.SequenceCollection

Loading from a url#

The cogent3 load functions support loading from a url. We load the above fasta file directly from GitHub.

from cogent3 import load_aligned_seqs

aln = load_aligned_seqs(
    "https://raw.githubusercontent.com/cogent3/cogent3/develop/doc/data/long_testseqs.fasta",
    moltype="dna",
)

Specifying the file format#

The loading functions use the filename suffix to infer the file format. This can be overridden using the format argument.

from cogent3 import load_aligned_seqs

aln = load_aligned_seqs("data/long_testseqs.fasta", moltype="dna", format="fasta")
aln
0
DogFacedTGTGGCACAAATACTCATGCCAACTCATTACAGCATGAGAACAGCAGTTTATTATACACT
Human......................G...............................CT....
HowlerMon......................G...........................G...CT....
Mouse.........G..G.........G...........C.....C............GCT..T.
NineBande.........................T............................CT....

5 x 2532 (truncated to 5 x 60) dna alignment

Specifying the sequence molecular type#

from cogent3 import make_aligned_seqs

protein_seqs = {"seq1": "DEKQL-RG", "seq2": "DDK--SRG"}
proteins_loaded = make_aligned_seqs(protein_seqs, moltype="protein")
proteins_loaded.moltype
proteins_loaded
0
seq1DEKQL-RG
seq2.D.--S..

2 x 8 protein alignment

Making an alignment from standard python objects#

From a dict of strings#

from cogent3 import make_aligned_seqs

seqs = {"seq1": "AATCG-A", "seq2": "AATCGGA"}
seqs_loaded = make_aligned_seqs(seqs, moltype="dna")

From a dict of numpy arrays#

from cogent3 import make_aligned_seqs
from numpy import array, uint8

seqs = {
    "seq1": array([2, 2, 0, 1, 3, 9, 2], dtype=uint8),
    "seq2": array([2, 2, 0, 1, 3, 3, 2], dtype=uint8),
}
seqs_loaded = make_aligned_seqs(seqs, moltype="dna")

From a series of strings#

The sequence names will be automatically created.

from cogent3 import make_aligned_seqs

data = ["AATCG-A", "AATCGGA"]
coll = make_aligned_seqs(data, moltype="dna", new_type=True)
coll
0
seq_1AATCGGA
seq_0.....-.

2 x 7 dna alignment

Changing sequence labels on loading#

Load a list of aligned nucleotide sequences, while specifying the DNA molecule type and stripping the comments from the label. In this example, we rename sequences by passing a function that removes everything after the first whitespace to the label_to_name parameter.

from cogent3 import make_aligned_seqs

data = {
    "sample1 Mus musculus": "AACCTGC--C",
    "sample2 Gallus gallus": "AAC-TGCAAC",
}
loaded_seqs = make_aligned_seqs(
    data, moltype="dna", label_to_name=lambda x: x.split()[0]
)
loaded_seqs
0
sample2AAC-TGCAAC
sample1...C...--.

2 x 10 dna alignment

Making a sequence collection from standard python objects#

This is done using make_unaligned_seqs(), which returns a SequenceCollection instance. The function arguments match those of make_aligned_seqs(). We demonstrate only for the case where the input data is a dict.

from cogent3 import make_unaligned_seqs

seqs = {"seq1": "AATCA", "seq2": "AATCGGA"}
seqs = make_unaligned_seqs(data=seqs, moltype="dna")
seqs
0
seq1AATCA
seq2AATCGGA

2 x {min=5, median=6.0, max=7} dna sequence collection

Loading sequences using format parsers#

load_aligned_seqs() and load_unaligned_seqs() are just convenience interfaces to format parsers. It can sometimes be more effective to use the parsers directly, say when you don’t want to load everything into memory.

Loading FASTA sequences from an open file or list of lines#

To load FASTA formatted sequences directly, you can use iter_fasta_records. This parser returns data as python strings.

Note

This returns the sequences as strings.

from cogent3.parse.fasta import iter_fasta_records

seqs = list(iter_fasta_records("data/long_testseqs.fasta"))
seqs
[('Human',
  'TGTGGCACAAATACTCATGCCAGCTCATTACAGCATGAGAACAGCAGTTTATTACTCACTAAAGACAGAATGAATGTAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAACATAACAGATGGGCTGGAAGTAAGGAAACATGTAATGATAGGCGGACTCCCAGCGAAAAAAAGGTAGATCTGAATGCTGATCCCCTGTGTGAGAGAAAAGAATGGAATAAGCAGAAACTGCCATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGATAACACTAAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCCAGAAGTGATGAACTGTTAGGTTCTGATGACTCACATGATGGGGAGTCTGAATCAAATGCCTTGGACGTTCTAAATGAGGTAGATGAATATTCTGGTTCTTCAGAGAAAATAGACTTACTGGCCAGTGATCCTCATGAGGCTTTAATATGTGAAAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGACAAAATATTTGGGAAAACCTATCGGAAGAAGGCAAGCCTCCCCAACTTAAGCCATGTAACTGAAATTATAGGAGCATTTGTTACTGAGCCACAGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAGCGTAAAAGGACATCAGGCCTTCATCCTGAGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATCAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGATTCTATTCAGAATGAGAAAAATCCTAACCCAATAGAATCACTCGAAAAAGAATCTTTCAAAACGAAAGCTGAACCTATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCCACAATTCAAAAGCACCTAAAAAGAATCTGAGGAGGAAGTCTACCAGGCATATTCATGCGCTTGAACTAGTCAGTAGAAATCTAAGCCCACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGTGAAGAGATAAAGAAAAAAAAGTACAACCAAATGCCAGTCAGGCACAGCAGAAACCTACAACTCATGGAAGGTAAAGAACCTGCAACTGGAGCCAAGAAGAACAAGCCAAATGAACAGACAAGTAAAAGACATGACAGCGATACTTTCCCAGAGCTGAAGAATGCACCTGGTTCTTTTACTAAGTGTTCAAATACCAGTGAACTTAAAGAATTTAATCCTAGCCTTCCAAGAGAAGAAAAAGAGAAACTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAAGATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGGTACCTGGTACTGATTATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGGGAAGGCAAAAACAGAACCAAATAAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTCCAAAGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGACATGAAGTTAACCACTCAAATCCAGAAGAGGAATGTGCACACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTGAATGTGAACAAAAGGAAAATCAAGGAAAGAATGAGTCTAATAAGCCTGTACAGACAGTTAATATCACTGCAGGCTTTCCTGTGGTTGGTCAGAAAGATAAGCCAGTTGATAATGCCAAATGTAAAGGAGGCTCTAGGTTTTGTCTATCATCTCAGTTCAGAGGCAACGAAACTGGACTCATTACTCCAAATAAACATGGACTTTTACAAAACCCATATCGTATACCACCACTTTTTCCCATCAAGTCATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAACTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAAATGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGTAATAACAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGTAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTAGAAACAGAGGGCCAAAATTGAATGCTATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCTATAAACAAAGTCTTCCTGGAAGTAATAAGCATCCTGAAATAAAAAAGCAAGAAGTTCAGACTGTTAATACAGATTTCTCTCCACTGATTTCAGATAACTTAGAACAGCCTATGAGTAGTCATGCATCTCAGGTTTGTTCTGAGACACCTGATGACCTGTTAGATGATGGTGAAATAAAGGAAGATACTAGTTTTGCTGAAAATGACATTAAGGAAAGTTCTGCTGTTTTTAGCAAAAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTTCACCCATACACATTTGGCTCAGGGTTACCGAAGAGGG'),
 ('HowlerMon',
  'TGTGGCACAAATACTCATGCCAGCTCATTACAGCATGAGAACAGCAGTTTGTTACTCACTAAAGACACACTGAATGTAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAACATAACAGATGGGCTGAAAGTGAGGAAACATGTAATGATAGGCAGACTCCCAGCGAGAAAAAGGTAGATGTGGATGCTGATCCCCTGCATGGGAGAAAAGAATGGAATAAGCAGAAACCTCCGTGCTCTGAGAATCCTAGAGATACTGAAGATGTTGCTTGGATAATGCTAAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCCAGAAGTGATGAACTGTTAACTTCTGATGACTCACATGATGGGGGGTCTGAATCAAATGCCTTGGAAGTTCTAAATGAGGTAGATGGATATTCTAGTTCTTCAGAGAAAATAGACTTACTGGCCAGTGATCCTCATGATCATTTGATATGTGAAAGAGTTCACTGCAAATCAGTAGAGAGTAGTATTGAAGATAAAATATTTGGGAAAACCTATCGGAGGAAGGCAAGCCTCCCTAACTTGAGCCACGTAACTGAAATTATAGGAGCATTTGTTACTGAGCCACAGATAATACAAGAGCATCCTCTCACAAATAAATTAAAGCGTAAAAGGACATCAGGACTTCATCCTGAGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAAAGATAAATCAGGGAACTAACCAAACAGAGCGGAATGATCAAGTGATGAATATTACTAACAGTGGTCATGAGAATAAAACAAAAGGTGATTCTATTCAGAATGAGAACAATCCTAACCCAGTAGAATCACTGGAAAAAGAATCATTCAAAAGTAAAGCTGAACCTATAAGCAGTAGTATAAGCAATATGGAATTAGAATTGAATGTCCACAATTCCAAAGCATCTAAAAAGAATCTGAGAAGGAAGTCTACCAGGCATATTCATGAGCTTGAACTAGTCAGTAGAAATCTAAGCCCACCTAATTATACTGAAGTACAAATTGATAGTTGTTCTAGCAGTGAAGAGATAAAGAAAAAAAATTACAACCAAATGCCAGTCAGGCACAGCAGAAAGCTACAACTCATGGAAGATAAAGAACGTGCAGCTAGAGCCAAAAAGAGCAAGCCAAATGAACAAACAAGTAAAAGACATGCCAGTGATACTTTCCCAGAACTGAGGAACATACCTGGTTCTTTTACTAACTGTTCAAATACTAATGAATTTAAAGAATTTAATCCTAGCCTTCCAAGAGAACAAACAGAGAAACTAGAAACAGTTAAACTGTCTAATAATGCCAAAGACCCCAAAGATCTCATGTTAAGTGGAGAAAGTGTTTTGCAAATTGAAAGATCTGTAGAGAGTAGCAGTATTTTGTTGATACCTGGTACTGATTATGGCACTCAGGAAAGTATCTCATTACTGGAAGTTAGCACTCTGGGGAAGGCAAAAACAGAACCAAATAAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGAACTAATTCATGGTTCTAAAGATACTAGAAATGGCACAGAAGGCTTGAAGTATCCATTGGGACCTGAAGTTAACTACTCAAATCCAGAAAAGGAATGTGCATGCTCTAGGTCCTTAAAGAAACAAAGTCCAAAGGTCACTCCTGAATGTGAACAAAAGGAAAATCAAGGAGAGAAAGAGTCTAATGAGCTTGTAGAGACAGTTAATACCACTGCAGGCTTTCCTATGGTTTGTCAGAAAGATAAGCCAGTTGATTATGCCAGATGTGAAGGAGGCTCTAGGCTTTGTCTATCATCTCAGTTCAGAGGCAACGAAACTGGACTCATTATTCCAAATAAACATGGACTTTTACAGAACCCATATCATATGTCACCGCTTATTCCCACCAGGTCATTTGTTAAAACTAAATGTAAGAAAAACCTGCTAGAAGAAAACTCTGAGGAACATTCAATGTCACCTGAAAGAGCAATGGGAAACAAGAACATTCCAAGTACAGTGAGCACAATTAGCCATAATAACAGAGAAAATGCTTTTAAAGAAACCAGCTCAAGCAGTATTTATGAAGTAGGTTCCAGTGATGAAAACATTCAAGCAGAGCTAGGTAGAAACAGAAGGCCAAAATTGAATGCTATGCTTAGATTAGGGCTTCTGCAACCTGAGATTTGTAAGCAAAGTCTTCCTATAAGTGATAAACATCCTGAAATTAAAAAGCAAGAAGTTCAGACTGTTAATACAGACGTCTCTCTACTGATTTCATATAACCTAGAACAGCATATGAGCAGTCATACATCTCAGGTTTGTTCTGAGACACCTGACAACCTGTTAGATGATGGTGAAATAAAGGAAGATACTAGTTTTGCTGAATATGGCATTAAGGAGACTTCTACTGTTTTTAGCAAAAGTGTCCAGAGAGGAGAGCTCAGCAGGAGCCCTAGCCCTTTCACCCATACACATTTGGCTCAGGTTTACCAAAGAGGG'),
 ('Mouse',
  'TGTGGCACAGATGCTCATGCCAGCTCATTACAGCCTGAGACCAGCAGTTTATTGCTCATTGAAGACAGAATGAATGCAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCATAGCAGTGAGCCAGCAGAGCAGATGGGCTGCAAGTAAAGGAACATGTAACGACAGGCAGGTTCCCAGCGGGGAAAAGGTAGGTCCAAACGCTGACTCCCTTAGTGATAGAGAGAAGTGGACTCACCCGCAAAGTCTGTGCCCTGAGAATTCTGGAGCTACCACCGATGTTCCTTGGATAACACTAAATAGCAGCGTTCAGAAAGTTAATGAGTGGTTTTCCAGAACTGGTGAAATGTTAACTTCTGACAGCGCATCTGCCAGGAGGCACGAGTCAAATGCTTTGGAAGTTTCAAACGAAGTGGATGGGGGTTTTAGTTCTTCAAGGAAAACAGACTTAGTAACCCCCGACCCCCATCATACTTTAATGTGTGGAAGAGACTTCTCCAAACCAGTAGAGGATAATATCAGTGATAAAATATTTGGGAAATCCTATCAGAGAAAGGGAAGCCGCCCTCACCTGAACCATGTGACTGAAATTATAGGCACATTTATTACAGAACCACAGATAACACAAGAGCAGCCCTTCACAAATAAATTAAAACGTAAGAGAAGTACATCCCTTCAACCTGAGGACTTCATCAAGAAAGCAGATTCAGCAGGTCAAAGGACTCCTGACAACATAAATCAGGGAACTGACCTAATGGAGCCAAATGAGCAAGCAGTGAGTACTACCAGTAACTGTCAGGAGAACAAAATAGCAGGTAGTAATCTCCAGAAAGAGAAAAGCGCTCATCCAACTGAATCATTGAGAAAGGAACCTTCCACAGCAGGAGCCAAATCTATAAGCAACAGTGTAAGTGATTTGGAGGTAGAATTAAACGTCCACAGTTCAAAAGCACCTAAGAAAAATCTGAGGAGGAAGTCTATCAGGTGTGCTCTTCCACTTGAACCAATCAGTAGAAATCCAAGCCCACCTACTTGTGCTGAGCTTCAAATCGATAGTTGTGGTAGCAGTGAAGAAACAAAGAAAAACCATTCCAACCAACAGCCAGCCGGGCACCTTAGAGAGCCTCAACTCATCGAAGACACTGAACCTGCAGCGGATGCCAAGAAGAACGAGCCAAATGAACACATAAGGAAGAGACGTGCCAGCGATGCTTTCCCAGAAGAGAAAAACAAAGCTGGTTTATTAACTAGCTGTTCAAGTCCTAGAAAATCTCAAGGGCCTAATCCCAGCCCTCAGAGAACAGGAACAGAGCAACTTGAAACACGCCAAATGTCTGACAGTGCCAAAGAACTCGGGGATCGGGTCCTAGGAGGAGAGCCCAGTGGCAAAACTGACCGATCTGAGGAGAGCACCAGCGTATCCTTGGTACCTGACACTGACTACGACACTCAGAACAGTGTCTCAGTCCTGGACGCTCACACTGTCAGATATGCAAGAACAGGATCCGCTCAGTGTATGACTCAGTTTGTAGCAAGCGAAAACCCCAAGGAACTCGTCCATGGCTCTAACAATGCTGGGAGTGGCACAGAGGGTCTCAAGCCCCCCTTGAGACACGCGCTTAACCTCTCAAAACCTCAAAAGGACTGTGCTCACTCTGTGCCCTCAAAGGAACTGAGTCCAAAGGTGACAGCTAAAGGTAAACAAAAAGAACGTCAGGGACAGGAAGAATTTGAAAGTCACGTACAAGCAGTTGCGGCCACAGTGGGCTTACCTGTGCCCTGTCAAGAAGGTAAGCTAGCTGCTGATACAATGTGTGATAGAGGTTGTAGGCTTTGTCCATCATCTCATTACAGAAGCGGGGAGAATGGACTCAGCGCCACAGGTAAATCAGGAATTTCACAAAACTCACATTTTAAACAATCAGTTTCTCCCATCAGGTCATCTATAAAAACTGACAATAGGAAACCTCTGACAGAGGGACGATTTGAGAGACATACATCATCAACTGAGATGGCGGTGGGAAATGAGAACCTTCAGAGTACAGTGCACACAGTTAGCCTGAATAACAGAGGAAATGCTTGTCAAGAAGCCGGCTCGGGCAGTATTCATGAAGTATGTTCCACTGGTGACTCCTTCCCAGGACAACTAGGTAGAAACAGAGGGCCTAAGGTGAACACTGTGCCTCCATTAGATAGTATGCAGCCTGGTGTCTGTCAGCAAAGTGTTCCTGTAAGTGATAAGTATCTTGAAATAAAAAAGCAGGAGGGTGAGGCTGTCTGTGCAGACTTCTCTCCACTATTCTCAGACCATCTTGAGCAATCTATGAGTGGTAAGGTTTTTCAGGTTTGCTCTGAGACACCTGATGACCTGCTGGATGATGTTGAAATACAGGGACATACTAGCTTTGGTGAAGGTGACATAATGGAGAGATCTGCTGTCTTTAACGGAAGCATCCTGAGAAGGGAGTCCAGTAGGAGCCCTAGTCCTGTAACCCATGCATCGAAGTCTCAGAGTCTCCACAGAGCG'),
 ('NineBande',
  'TGTGGCACAAATACTCATGCCAACTTATTACAGCATGAGAACAGCAGTTTATTACTCACTAAAGACAGAATGAATGTAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGCGCCAACAGAGCAGATGGGCTGAAAGTAAGGAAACATGTAATGATAGGCAGACTCCCAGCGAGAAAAAGGTAGATGTGGATGCTGATCCCCTGTATGGGCGAAAAGAACTGAATAAGCAGAAACCTCCATGCTCTGAGAGTCATAGAGATACCCAAGATATTCCTTGGATAATGCTGAATAGTAGCATTCAGAAAGTTAACGAGTGGTTTTCCAGAGGTGATGACATATTAACTTCTGATGACTCACACGATAGGGGGTCTGAATTAAATGCATTGAAAGTTTCAAAAGAAGTAGATGAATATTCTAGTTTTTCAGAGAAGATAGACTTAATGGCCATTAATCCTCATGATACTTTACAATTTGAAAGAGTCCAATTGAAACCAGCAGAGAGTAACATCAAAGATAAAATATTTGGGAAAACCTATCATAGGAAGGCAAGCCTCCCTAACTTGAGCCACATAACCCGATTTATAGGAGCTATTGCTGCAGAGCCCAAGATAACACAAGAGCATTCCCTCCAAAATAAAATAAAGCGTAAAAGGGCATCAGGCCTTCGTCCTGAGGATTTATCCAAGAAAGTAGATTTGACAGTTCAAAAAACCCCTGAAAAGATAAATCAGGGAACTGACCAAATGGAGCAGAATGATCCAGTGATGAATATTGCTAATAGTGGTCATGAGAATGAAACAAAAGGTGATTGTGTTCAGAAAGAGAAAAATGCTAATCCGACAGAATCATTGGGAAAAGAATCTTTCAGAACTAAAGGCGAACCTATAAGCAGCAGTATAAGCAATATGGAACTAGAATTAAATATTTTAAATTCAAAAGCATCTAAGAAGAATCCGAAGAGGATGTCCACCAGGCATATTCATGCACTTGAACTAGGCAGTAGAAATCCAAGCCCACCTAATCATACTGAACTACAAATTGATAGTTGTTCTAGCATTGAAGAGATAGAGAAAATAAATTCTAACCAAAAGCCAATCAGACACAACAGAATGCTTCAACTCACGAAAGAAAAAGAAACCACAACTGGAGCCAAAAAGAATAAGCCAAATGAACAAATAAGTGAAAGACATGCCAGTGATGCTTTCCTAGAACTTAAAAATGTAACTGATTTTCTTCCTAAATGTTCAAGTTCTGATAAACTTCAAAAATTTAATTCTAGCCTGCAAGGAGAAGTAGCAGAGAACCTAGAAACAATTCAAGTGTCTGATAGTACCAGGGACCCTGAAGATCTGGTGGTAAGTGGAGAAAAGTGTTTGCAAACTGAAAGATCTGCAGAGAGTACCGGTATTTCAGTGGTACCTGATACTGATTATGGCACTCAAGACAGTATCTCATTACTGGAAGCTGACACCCTGGGGAAGGCAAAAACAGCACTAAATCAACATGTGAGTCAGTATGTAGCAATTAGAAATGCCACTGAACTTTCCCATGGTTCTAAAGACACTAGAAATGACACTGAAGATTTTAAGGATTCATTGAGACATGAAGTTAACCACTCGAATCCAGAAAATGAATGTGCACACTCCAGGTTCTTAGGGAAACAAAGTCCAAAAGTCACCTTTGAATGTAGACATAAAGAAAATCAGGGGAAGAAAGAGTCTAAAAAACATGTGCAGGTAATTCACACAACTGCAGGCTTTCCTATAGTTTGTCAGAAAGATAAGCCAGGTGATTATGCCAAAGGTCAAGGAGTCTCTAGGCTTTGTCAGTCCTCTCAGGCCAGAGGCAATGAATCTGAACTCATTAATTCAAATGAACATGAAATTTCACAAAACCCAGATCAAATGCCATCACTTTCTCACATGAAGTCATCTGTTAAAACTAAATGTAAGGAAAACCTGTCAGAGGAAAAGTTTGAGGAACTTACAGTGTCACTTGAAAGAACAATGGTAAATGAGAACATTCAAAGTACAGTAAGCACAATTAGCCACAGTAACAGAGAAAACACTTTTAAAGAAGCCAGCTCAAGCAGTATTAATGAAGTAGGGTCCAGTGATGAGAACATTCAAGCAGAAGTAGGTAGAAACAGAGCACCTAAATTAAATGCTATGCTCAGATTAGGTCTTATGCAACCTGAAGTCTATAAGCAAAGTCTTCCTATAACCAATAAATATCCTGAAATAAAAAGTCAAGGAATTCGGGCTGTTGATATAGACTTCTCTCCACTAATTTCAGATAACCTACAACTACCTATGAATAGTTGTGCTTCCCAGATTTGTTCTGAGACACCTGATGACTTGTTAGATGATGATGAAATAAAGGAAAATAACTGCTTTGCTGAAAGTGACATTAAGGAAAGATCTGCTATTTTTAGCAAAACTGTCCAGAAAAGAGAGTTCAGAAGGAGCCCTAGCCCTTTAGTCCATACAAGTTTTGCTCAGGGTCACCAAAGAAAG'),
 ('DogFaced',
  'TGTGGCACAAATACTCATGCCAACTCATTACAGCATGAGAACAGCAGTTTATTATACACTAAAGACAGAATGAATGTAGAAAAGACTGACTTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAGCAGAACAGATGGGTTGAAACTAAGGAAACATGTAATGATAGGCAGACTTCCAGCGAGAAAAAGGTAGTTCTGAATGCTGATCCCCTGAATGGAAGAATAAAACTGAATAAGCAGAAACCTCCATGCTCTGACAGTCCTAGAGATTCCAAAGATATTCCTTGGATAACACGGAATAGTAGCATACAGAAAGTTAATGAGTGGTTTTCCAGACGTGATGAAACATTAACTTCTGATGTCTTACTTGATGAGAGGTCTGAATCAAATGTGGTAGAAGTTCCAAATGAAGTAGATGGATACTCTGGTGCTTCAGAGGAAATAGCCTTAAAGGCCAGTGATCCTCATGGTGCTTTAATATGTGAAAGAGTTCACTCCAAATTGATAGAAAGTAATATTGAAGATAAAATATTTGGGAAAACATATCGGAGGAAAGCAAGCCTCCCTAACTTAAGCCACATAACTGAAATTACAAGAGCATCTGCTACAGAACCTCAGATAACACAAGAGTGCCCCCTCACAAATAAACTAAAACGTAAAAGAACATCAGGCCTTCATCCTGAGGATTTTATCAAGAAAATAGATTTGACAACTCAAAAAACTTCTGAAAATATAATTGAGGGAACTGACCAAATAGAGCAGAATGGTCATGTGATGAATAGTTCTAATGATGGTCATGAGAATGAAACAAAAGGTGATTATGTTCAGAAGAAGAAAAATACAAACCCAACAGAATCATTGGAAAAAGAATCTTTCAGAACTAAAGTTGAGTCTGTACCCAACAACATAAGCAATGTGGAACTAGAATTAAATATTCACGGTTCAAAAGCACTCAAGAAGAATCTGAGGAGGAAGTCCACCAGGCATATTCATGCACTTGAACTAGTCAATAGAAATTCAAGCCCACCTAATCATACTGAACTACAAATTGATAGTTGTTCCAGCAGTGAAGAACTGAAGGAAAAAAATTCTGACCGAATGCCAGACAGACACAGCAAAAAACTTCAGTTCGTAGAAGATAAAGAATCTGCAACTGGAGCCAAGAAGAACATGCCAAATGAGGCAATAAATAAAAGACTTTCCAGTGAAGCTTTTCCCGAATTAAATAACGTACCTGGTTTTTTTACTAATGGTTCAAGTTCTAATAAACGTCAAGAGTTTAATCCTAGCCTTCAAGGAGAAGAAATAGAGAATCTACGAACAATTCAAGTGTCTAATAGCACCAAAGACCCCAAAATTCTAATCTTTGGTGAAGGAAGAGGTTCACAAACTGATCGATCTACAGAGAGTACCAGTATTTTATTGGGACCTGAAACGGATTATGGCACTCAAGATAGTATCTCATTACTGGAATCTGACATCCCAGGGAGGGCAAAGACAGCACCAAACCAACATGCAGATCTGTGTGCAGCAATTGAAAACCCCAGAGAACTTATTCATGATTTTAAAGAAACTAGAAATGACACAGAGAGCTTTAAAGATCCATTGAGACATGAAGTTAACTCCTCAGACCCAGAAAAGGAATGTGCACACTCCAGGTCCTTGATAAAACAAAGTCCAAAAGTCACTCTTGAATGTGACCGAAAAGGAAATCAGGGAAAGAAAGAGTCTAACGAGCATGTGCAGGCAGTTTATACAACTATAGGCTTTCCTGGGGTTTCTGAGAAAGACAAACCAGGAGATTATGCCAGATATAAAGAAGTCTCTAGGCTTTGTCAGTCATTTCAGTCTAGAAGAAATGAAACTGAGCTCACTATTGCAAATAAACTTGGACTTTCACAAAACCCATATCATATGCCATCCATTTCTCCCATCAAGTCATCTGTTAAAACTATATGTAAGAAAAATCTGTCAGAGGAAAAGTTTGAAGAACATTCAATATTCCCTGAAAGAGCAATAGGAAATGAGACCATTCAAAGTACAGTGGGCACAATTAGCCAAAATAACAGAGAAAGCACTTTTAAAGAAGGCAGCTCAAGCGGTATTTATGAAGCAGGTTCCAGTGGTGAAAACATTCAAGCAGAACTAAGTAGAAACAGAGGACCAAAATTAAATGCTGTGCTTCAGTTGGGTCTCATGCAGCCTGAAGTCTATGAGCAAAGCCTTCCTCTAAGTAATAAACATTCTGAAATAAAAAGGCAAGGAGTTCAGGCTGTTAATGCAGATGTCTCTCCACAAATTTCAGATAACTTAGAGCAACCTATGAACAGTAATATTTCTCAGGTTTGTTCTGAGACACCGGATGACCTGTTAAATGATGACAAAATAAAGGACAATATCAGCTTTGATGAAAGTGGCATTCAGGAAAGATCTGCTGTTTTTAGCAAAAATGTCCAGAAAGGAGAATTCAGAAGGAGCCCTAGTCCCTTAGCCCATGCAAGTTTGTCTCAAGGTCGCCCAAGAAGG')]

Handling overloaded FASTA sequence labels#

The FASTA label field is frequently overloaded, with different information fields present in the field and separated by some delimiter. This can be flexibly addressed using the LabelParser. By creating a custom label parser, we can decide which part we use as the sequence name. We show how to convert a field into something specific.

from cogent3.parse.fasta import LabelParser

def latin_to_common(latin):
    return {"Homo sapiens": "human", "Pan troglodtyes": "chimp"}[latin]

label_parser = LabelParser(
    "%(species)s", [[1, "species", latin_to_common]], split_with=":"
)
for label in ">abcd:Homo sapiens:misc", ">abcd:Pan troglodtyes:misc":
    label = label_parser(label)
    print(label, type(label))
human <class 'cogent3.parse.fasta.RichLabel'>
chimp <class 'cogent3.parse.fasta.RichLabel'>

RichLabel objects have an Info object as an attribute, allowing specific reference to all the specified label fields.

from cogent3.parse.fasta import LabelParser, iter_fasta_records

fasta_data = [
    ">gi|10047090|ref|NP_055147.1| small muscle protein, X-linked [Homo sapiens]",
    "MNMSKQPVSNVRAIQANINIPMGAFRPGAGQPPRRKECTPEVEEGVPPTSDEEKKPIPGAKKLPGPAVNL",
    "SEIQNIKSELKYVPKAEQ",
    ">gi|10047092|ref|NP_037391.1| neuronal protein [Homo sapiens]",
    "MANRGPSYGLSREVQEKIEQKYDADLENKLVDWIILQCAEDIEHPPPGRAHFQKWLMDGTVLCKLINSLY",
    "PPGQEPIPKISESKMAFKQMEQISQFLKAAETYGVRTTDIFQTVDLWEGKDMAAVQRTLMALGSVAVTKD",
]
label_to_name = LabelParser(
    "%(ref)s",
    [[1, "gi", str], [3, "ref", str], [4, "description", str]],
    split_with="|",
)
for name, seq in iter_fasta_records(fasta_data, label_to_name=label_to_name):
    print(name)
    print(name.info.gi)
    print(name.info.description)
NP_055147.1
10047090
 small muscle protein, X-linked [Homo sapiens]
NP_037391.1
10047092
 neuronal protein [Homo sapiens]

Using a third-party plugin for sequence storage#

Sequence collections and alignments have a .storage attribute which holds the underlying sequence data and provides basic functions for obtaining it. Users can install a third-party plugin which is customized for different types of sequence data. The following examples require you install the cogent3-h5seqs plugin. This project provides alternative storage for both unaligned sequences and for alignments.

$ pip install cogent3-h5seqs

Selecting an alternate storage backend#

Specify the storage using the storage_backend argument.

from cogent3 import load_aligned_seqs

aln = load_aligned_seqs(
    "data/long_testseqs.fasta", moltype="dna", storage_backend="h5seqs_aligned"
)
aln
0
DogFacedTGTGGCACAAATACTCATGCCAACTCATTACAGCATGAGAACAGCAGTTTATTATACACT
HowlerMon......................G...........................G...CT....
Human......................G...............................CT....
Mouse.........G..G.........G...........C.....C............GCT..T.
NineBande.........................T............................CT....

5 x 2532 (truncated to 5 x 60) dna alignment

That’s it!

type(aln.storage)
cogent3_h5seqs.AlignedSeqsData

For the cogent3-h5seqs package you specify a different storage backend for unaligned sequences.

from cogent3 import load_unaligned_seqs

seqs = load_unaligned_seqs(
    "data/long_testseqs.fasta", moltype="dna", storage_backend="h5seqs_unaligned"
)
type(seqs.storage)
cogent3_h5seqs.UnalignedSeqsData

Set the default storage#

You can set the default storage process-wide, so you don’t need to use the storage_backend argument.

import cogent3

cogent3.set_storage_defaults(
    unaligned_seqs="h5seqs_unaligned", aligned_seqs="h5seqs_aligned"
)

aln = cogent3.get_dataset("brca1")
type(aln.storage)
cogent3_h5seqs.AlignedSeqsData

When you apply operations, the new backend storage setting is applied.

coll = aln.degap()
type(coll.storage)
cogent3_h5seqs.UnalignedSeqsData

Note

To revert to the cogent3 defaults, use the reset argument.

cogent3.set_storage_defaults(reset=True)