Loading a single sequence from a file#
In this case, the filename suffix is used to infer the data format.
from cogent3 import load_seq
seq = load_seq("data/mycoplasma-genitalium.fa", moltype="dna")
seq
0 | |
NC_000908.2 Mycoplasmoides genitalium G37, complete sequence | TAAGTTATTATTTAGTTAATACTTTTAACAATATTATTAAGGTATTTAAAAAATACTATT |
DnaSequence, length=580,076 (truncated to 60)
Warning
If a file has more than one sequence, only the first one is loaded.
seq = load_seq("data/brca1-bats.fasta", moltype="dna")
seq
0 | |
FlyingFox | TGTGGCACAAATGCTCATGCCAGCTCTTTACAGCATGAGAAC---AGTTTATTATACACT |
DnaSequence, length=3,009 (truncated to 60)
Note
It’s also possible to load a sequence from a url.
Directly use the fasta format parser to load a sequence#
The cogent3
parsers return standard Python data types. The iter_genbank_records()
is a generator, so it yields one record at a time. Because I know there’s a single sequence in this file, I wrap the call with list and select the first record.
from cogent3.parse.fasta import iter_fasta_records
label, seq = list(iter_fasta_records("data/mycoplasma-genitalium.fa"))[0]
label, seq[:10]
('NC_000908.2 Mycoplasmoides genitalium G37, complete sequence', 'TAAGTTATTA')
You can provide a converter that will transform the sequence data to the type you want. In this example, we use a cogent3
builtin to return a numpy
array of unsigned 8-bit integers. We first get all the IUPAC characters for DNA and construct the converter. The converter maps an integer the provided characters in their order of occurrence in dna_alpha
.
import numpy
from cogent3.core.alphabet import bytes_to_array
from cogent3.core.moltype import DNA
dna_alpha = "".join(DNA.most_degen_alphabet())
converter = bytes_to_array(dna_alpha.encode("utf8"), delete=b"\r\n\t ", dtype=numpy.uint8)
Note
The characters provided to the delete
argument are white space and essential to ensure line feeds are removed.
We then use the parser as before but provide our custom converter.
label, seq = list(iter_fasta_records("data/mycoplasma-genitalium.fa", converter=converter))[0]
label, seq[:10]
('NC_000908.2 Mycoplasmoides genitalium G37, complete sequence',
array([0, 2, 2, 3, 0, 0, 2, 0, 0, 2], dtype=uint8))
Directly use the genbank format parser to load a sequence and annotations#
The cogent3
parsers return standard Python data types. The iter_fasta_records()
is a generator, so it yields one record at a time. Because I know there’s a single sequence in this file, I wrap the call with list and select the first record.
from cogent3.parse.genbank import iter_genbank_records
label, seq, anns = list(iter_genbank_records("data/mycoplasma-genitalium.gb"))[0]
label, seq[:10], anns.keys()
('NC_000908',
'TAAGTTATTA',
dict_keys(['locus', 'length', 'mol_type', 'topology', 'db', 'date', 'definition', 'accession', 'version', 'dblink', 'keywords', 'source', 'species', 'taxonomy', 'references', 'comment', 'features', 'contig']))
As the output indicates, variable anns
is a dictionary. The features in the GenBank feature table are available as a list under the "features"
key. (See getting GenBank features as primitives.)
Loading an sequence collections from a file or url#
Directly use the fasta format parser to load sequences#
The cogent3
parsers return standard Python data types. The iter_genbank_records()
is a generator, so it yields one record at a time.
from cogent3.parse.fasta import iter_fasta_records
for label, seq in iter_fasta_records("data/long_testseqs.fasta"):
print(label, seq[:10])
Human TGTGGCACAA
HowlerMon TGTGGCACAA
Mouse TGTGGCACAG
NineBande TGTGGCACAA
DogFaced TGTGGCACAA
Loading aligned sequences#
Any file in which the sequences have exactly the same length can be loaded as an alignment.
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/long_testseqs.fasta", moltype="dna")
type(aln)
cogent3.core.alignment.Alignment
Note
The load functions record the origin of the data in a .source
attribute.
aln.source
'data/long_testseqs.fasta'
Loading unaligned sequences#
Files containing sequences that may differ in length can be loaded using load_unaligned_seqs()
, which returns a sequence collection.
from cogent3 import load_unaligned_seqs
seqs = load_unaligned_seqs("data/long_testseqs.fasta", moltype="dna")
type(seqs)
cogent3.core.alignment.SequenceCollection
Loading from a url#
The cogent3
load functions support loading from a url. We load the above fasta file directly from GitHub.
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs(
"https://raw.githubusercontent.com/cogent3/cogent3/develop/doc/data/long_testseqs.fasta",
moltype="dna",
)
Specifying the file format#
The loading functions use the filename suffix to infer the file format. This can be overridden using the format
argument.
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/long_testseqs.fasta", moltype="dna", format_name="fasta")
aln
0 | |
DogFaced | TGTGGCACAAATACTCATGCCAACTCATTACAGCATGAGAACAGCAGTTTATTATACACT |
Human | ......................G...............................CT.... |
HowlerMon | ......................G...........................G...CT.... |
Mouse | .........G..G.........G...........C.....C............GCT..T. |
NineBande | .........................T............................CT.... |
5 x 2532 (truncated to 5 x 60) dna alignment
Specifying the sequence molecular type#
from cogent3 import make_aligned_seqs
protein_seqs = {"seq1": "DEKQL-RG", "seq2": "DDK--SRG"}
proteins_loaded = make_aligned_seqs(protein_seqs, moltype="protein")
proteins_loaded.moltype
proteins_loaded
0 | |
seq1 | DEKQL-RG |
seq2 | .D.--S.. |
2 x 8 protein alignment
Making an alignment from standard python objects#
From a dict of strings#
from cogent3 import make_aligned_seqs
seqs = {"seq1": "AATCG-A", "seq2": "AATCGGA"}
seqs_loaded = make_aligned_seqs(seqs, moltype="dna")
From a dict of numpy arrays#
from cogent3 import make_aligned_seqs
from numpy import array, uint8
seqs = {
"seq1": array([2, 2, 0, 1, 3, 9, 2], dtype=uint8),
"seq2": array([2, 2, 0, 1, 3, 3, 2], dtype=uint8),
}
seqs_loaded = make_aligned_seqs(seqs, moltype="dna")
From a series of strings#
The sequence names will be automatically created.
from cogent3 import make_aligned_seqs
data = ["AATCG-A", "AATCGGA"]
coll = make_aligned_seqs(data, moltype="dna")
coll
0 | |
seq_1 | AATCGGA |
seq_0 | .....-. |
2 x 7 dna alignment
Changing sequence labels on loading#
Load a list of aligned nucleotide sequences, while specifying the DNA molecule type and stripping the comments from the label. In this example, we rename sequences by passing a function that removes everything after the first whitespace to the label_to_name
parameter.
from cogent3 import make_aligned_seqs
data = {
"sample1 Mus musculus": "AACCTGC--C",
"sample2 Gallus gallus": "AAC-TGCAAC",
}
loaded_seqs = make_aligned_seqs(
data, moltype="dna", label_to_name=lambda x: x.split()[0]
)
loaded_seqs
0 | |
sample2 | AAC-TGCAAC |
sample1 | ...C...--. |
2 x 10 dna alignment
Making a sequence collection from standard python objects#
This is done using make_unaligned_seqs()
, which returns a SequenceCollection
instance. The function arguments match those of make_aligned_seqs()
. We demonstrate only for the case where the input data is a dict
.
from cogent3 import make_unaligned_seqs
seqs = {"seq1": "AATCA", "seq2": "AATCGGA"}
seqs = make_unaligned_seqs(seqs, moltype="dna")
seqs
0 | |
seq1 | AATCA |
seq2 | AATCGGA |
2 x {min=5, median=6.0, max=7} dna sequence collection
Loading sequences using format parsers#
load_aligned_seqs()
and load_unaligned_seqs()
are just convenience interfaces to format parsers. It can sometimes be more effective to use the parsers directly, say when you don’t want to load everything into memory.
Loading FASTA sequences from an open file or list of lines#
To load FASTA formatted sequences directly, you can use iter_fasta_records
. This parser returns data as python strings.
Note
This returns the sequences as strings.
from cogent3.parse.fasta import iter_fasta_records
seqs = list(iter_fasta_records("data/long_testseqs.fasta"))
seqs
[('Human',
'TGTGGCACAAATACTCATGCCAGCTCATTACAGCATGAGAACAGCAGTTTATTACTCACTAAAGACAGAATGAATGTAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAACATAACAGATGGGCTGGAAGTAAGGAAACATGTAATGATAGGCGGACTCCCAGCGAAAAAAAGGTAGATCTGAATGCTGATCCCCTGTGTGAGAGAAAAGAATGGAATAAGCAGAAACTGCCATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGATAACACTAAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCCAGAAGTGATGAACTGTTAGGTTCTGATGACTCACATGATGGGGAGTCTGAATCAAATGCCTTGGACGTTCTAAATGAGGTAGATGAATATTCTGGTTCTTCAGAGAAAATAGACTTACTGGCCAGTGATCCTCATGAGGCTTTAATATGTGAAAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGACAAAATATTTGGGAAAACCTATCGGAAGAAGGCAAGCCTCCCCAACTTAAGCCATGTAACTGAAATTATAGGAGCATTTGTTACTGAGCCACAGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAGCGTAAAAGGACATCAGGCCTTCATCCTGAGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATCAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGATTCTATTCAGAATGAGAAAAATCCTAACCCAATAGAATCACTCGAAAAAGAATCTTTCAAAACGAAAGCTGAACCTATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCCACAATTCAAAAGCACCTAAAAAGAATCTGAGGAGGAAGTCTACCAGGCATATTCATGCGCTTGAACTAGTCAGTAGAAATCTAAGCCCACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGTGAAGAGATAAAGAAAAAAAAGTACAACCAAATGCCAGTCAGGCACAGCAGAAACCTACAACTCATGGAAGGTAAAGAACCTGCAACTGGAGCCAAGAAGAACAAGCCAAATGAACAGACAAGTAAAAGACATGACAGCGATACTTTCCCAGAGCTGAAGAATGCACCTGGTTCTTTTACTAAGTGTTCAAATACCAGTGAACTTAAAGAATTTAATCCTAGCCTTCCAAGAGAAGAAAAAGAGAAACTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAAGATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGGTACCTGGTACTGATTATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGGGAAGGCAAAAACAGAACCAAATAAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTCCAAAGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGACATGAAGTTAACCACTCAAATCCAGAAGAGGAATGTGCACACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTGAATGTGAACAAAAGGAAAATCAAGGAAAGAATGAGTCTAATAAGCCTGTACAGACAGTTAATATCACTGCAGGCTTTCCTGTGGTTGGTCAGAAAGATAAGCCAGTTGATAATGCCAAATGTAAAGGAGGCTCTAGGTTTTGTCTATCATCTCAGTTCAGAGGCAACGAAACTGGACTCATTACTCCAAATAAACATGGACTTTTACAAAACCCATATCGTATACCACCACTTTTTCCCATCAAGTCATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAACTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAAATGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGTAATAACAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGTAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTAGAAACAGAGGGCCAAAATTGAATGCTATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCTATAAACAAAGTCTTCCTGGAAGTAATAAGCATCCTGAAATAAAAAAGCAAGAAGTTCAGACTGTTAATACAGATTTCTCTCCACTGATTTCAGATAACTTAGAACAGCCTATGAGTAGTCATGCATCTCAGGTTTGTTCTGAGACACCTGATGACCTGTTAGATGATGGTGAAATAAAGGAAGATACTAGTTTTGCTGAAAATGACATTAAGGAAAGTTCTGCTGTTTTTAGCAAAAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTTCACCCATACACATTTGGCTCAGGGTTACCGAAGAGGG'),
('HowlerMon',
'TGTGGCACAAATACTCATGCCAGCTCATTACAGCATGAGAACAGCAGTTTGTTACTCACTAAAGACACACTGAATGTAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAACATAACAGATGGGCTGAAAGTGAGGAAACATGTAATGATAGGCAGACTCCCAGCGAGAAAAAGGTAGATGTGGATGCTGATCCCCTGCATGGGAGAAAAGAATGGAATAAGCAGAAACCTCCGTGCTCTGAGAATCCTAGAGATACTGAAGATGTTGCTTGGATAATGCTAAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCCAGAAGTGATGAACTGTTAACTTCTGATGACTCACATGATGGGGGGTCTGAATCAAATGCCTTGGAAGTTCTAAATGAGGTAGATGGATATTCTAGTTCTTCAGAGAAAATAGACTTACTGGCCAGTGATCCTCATGATCATTTGATATGTGAAAGAGTTCACTGCAAATCAGTAGAGAGTAGTATTGAAGATAAAATATTTGGGAAAACCTATCGGAGGAAGGCAAGCCTCCCTAACTTGAGCCACGTAACTGAAATTATAGGAGCATTTGTTACTGAGCCACAGATAATACAAGAGCATCCTCTCACAAATAAATTAAAGCGTAAAAGGACATCAGGACTTCATCCTGAGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAAAGATAAATCAGGGAACTAACCAAACAGAGCGGAATGATCAAGTGATGAATATTACTAACAGTGGTCATGAGAATAAAACAAAAGGTGATTCTATTCAGAATGAGAACAATCCTAACCCAGTAGAATCACTGGAAAAAGAATCATTCAAAAGTAAAGCTGAACCTATAAGCAGTAGTATAAGCAATATGGAATTAGAATTGAATGTCCACAATTCCAAAGCATCTAAAAAGAATCTGAGAAGGAAGTCTACCAGGCATATTCATGAGCTTGAACTAGTCAGTAGAAATCTAAGCCCACCTAATTATACTGAAGTACAAATTGATAGTTGTTCTAGCAGTGAAGAGATAAAGAAAAAAAATTACAACCAAATGCCAGTCAGGCACAGCAGAAAGCTACAACTCATGGAAGATAAAGAACGTGCAGCTAGAGCCAAAAAGAGCAAGCCAAATGAACAAACAAGTAAAAGACATGCCAGTGATACTTTCCCAGAACTGAGGAACATACCTGGTTCTTTTACTAACTGTTCAAATACTAATGAATTTAAAGAATTTAATCCTAGCCTTCCAAGAGAACAAACAGAGAAACTAGAAACAGTTAAACTGTCTAATAATGCCAAAGACCCCAAAGATCTCATGTTAAGTGGAGAAAGTGTTTTGCAAATTGAAAGATCTGTAGAGAGTAGCAGTATTTTGTTGATACCTGGTACTGATTATGGCACTCAGGAAAGTATCTCATTACTGGAAGTTAGCACTCTGGGGAAGGCAAAAACAGAACCAAATAAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGAACTAATTCATGGTTCTAAAGATACTAGAAATGGCACAGAAGGCTTGAAGTATCCATTGGGACCTGAAGTTAACTACTCAAATCCAGAAAAGGAATGTGCATGCTCTAGGTCCTTAAAGAAACAAAGTCCAAAGGTCACTCCTGAATGTGAACAAAAGGAAAATCAAGGAGAGAAAGAGTCTAATGAGCTTGTAGAGACAGTTAATACCACTGCAGGCTTTCCTATGGTTTGTCAGAAAGATAAGCCAGTTGATTATGCCAGATGTGAAGGAGGCTCTAGGCTTTGTCTATCATCTCAGTTCAGAGGCAACGAAACTGGACTCATTATTCCAAATAAACATGGACTTTTACAGAACCCATATCATATGTCACCGCTTATTCCCACCAGGTCATTTGTTAAAACTAAATGTAAGAAAAACCTGCTAGAAGAAAACTCTGAGGAACATTCAATGTCACCTGAAAGAGCAATGGGAAACAAGAACATTCCAAGTACAGTGAGCACAATTAGCCATAATAACAGAGAAAATGCTTTTAAAGAAACCAGCTCAAGCAGTATTTATGAAGTAGGTTCCAGTGATGAAAACATTCAAGCAGAGCTAGGTAGAAACAGAAGGCCAAAATTGAATGCTATGCTTAGATTAGGGCTTCTGCAACCTGAGATTTGTAAGCAAAGTCTTCCTATAAGTGATAAACATCCTGAAATTAAAAAGCAAGAAGTTCAGACTGTTAATACAGACGTCTCTCTACTGATTTCATATAACCTAGAACAGCATATGAGCAGTCATACATCTCAGGTTTGTTCTGAGACACCTGACAACCTGTTAGATGATGGTGAAATAAAGGAAGATACTAGTTTTGCTGAATATGGCATTAAGGAGACTTCTACTGTTTTTAGCAAAAGTGTCCAGAGAGGAGAGCTCAGCAGGAGCCCTAGCCCTTTCACCCATACACATTTGGCTCAGGTTTACCAAAGAGGG'),
('Mouse',
'TGTGGCACAGATGCTCATGCCAGCTCATTACAGCCTGAGACCAGCAGTTTATTGCTCATTGAAGACAGAATGAATGCAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCATAGCAGTGAGCCAGCAGAGCAGATGGGCTGCAAGTAAAGGAACATGTAACGACAGGCAGGTTCCCAGCGGGGAAAAGGTAGGTCCAAACGCTGACTCCCTTAGTGATAGAGAGAAGTGGACTCACCCGCAAAGTCTGTGCCCTGAGAATTCTGGAGCTACCACCGATGTTCCTTGGATAACACTAAATAGCAGCGTTCAGAAAGTTAATGAGTGGTTTTCCAGAACTGGTGAAATGTTAACTTCTGACAGCGCATCTGCCAGGAGGCACGAGTCAAATGCTTTGGAAGTTTCAAACGAAGTGGATGGGGGTTTTAGTTCTTCAAGGAAAACAGACTTAGTAACCCCCGACCCCCATCATACTTTAATGTGTGGAAGAGACTTCTCCAAACCAGTAGAGGATAATATCAGTGATAAAATATTTGGGAAATCCTATCAGAGAAAGGGAAGCCGCCCTCACCTGAACCATGTGACTGAAATTATAGGCACATTTATTACAGAACCACAGATAACACAAGAGCAGCCCTTCACAAATAAATTAAAACGTAAGAGAAGTACATCCCTTCAACCTGAGGACTTCATCAAGAAAGCAGATTCAGCAGGTCAAAGGACTCCTGACAACATAAATCAGGGAACTGACCTAATGGAGCCAAATGAGCAAGCAGTGAGTACTACCAGTAACTGTCAGGAGAACAAAATAGCAGGTAGTAATCTCCAGAAAGAGAAAAGCGCTCATCCAACTGAATCATTGAGAAAGGAACCTTCCACAGCAGGAGCCAAATCTATAAGCAACAGTGTAAGTGATTTGGAGGTAGAATTAAACGTCCACAGTTCAAAAGCACCTAAGAAAAATCTGAGGAGGAAGTCTATCAGGTGTGCTCTTCCACTTGAACCAATCAGTAGAAATCCAAGCCCACCTACTTGTGCTGAGCTTCAAATCGATAGTTGTGGTAGCAGTGAAGAAACAAAGAAAAACCATTCCAACCAACAGCCAGCCGGGCACCTTAGAGAGCCTCAACTCATCGAAGACACTGAACCTGCAGCGGATGCCAAGAAGAACGAGCCAAATGAACACATAAGGAAGAGACGTGCCAGCGATGCTTTCCCAGAAGAGAAAAACAAAGCTGGTTTATTAACTAGCTGTTCAAGTCCTAGAAAATCTCAAGGGCCTAATCCCAGCCCTCAGAGAACAGGAACAGAGCAACTTGAAACACGCCAAATGTCTGACAGTGCCAAAGAACTCGGGGATCGGGTCCTAGGAGGAGAGCCCAGTGGCAAAACTGACCGATCTGAGGAGAGCACCAGCGTATCCTTGGTACCTGACACTGACTACGACACTCAGAACAGTGTCTCAGTCCTGGACGCTCACACTGTCAGATATGCAAGAACAGGATCCGCTCAGTGTATGACTCAGTTTGTAGCAAGCGAAAACCCCAAGGAACTCGTCCATGGCTCTAACAATGCTGGGAGTGGCACAGAGGGTCTCAAGCCCCCCTTGAGACACGCGCTTAACCTCTCAAAACCTCAAAAGGACTGTGCTCACTCTGTGCCCTCAAAGGAACTGAGTCCAAAGGTGACAGCTAAAGGTAAACAAAAAGAACGTCAGGGACAGGAAGAATTTGAAAGTCACGTACAAGCAGTTGCGGCCACAGTGGGCTTACCTGTGCCCTGTCAAGAAGGTAAGCTAGCTGCTGATACAATGTGTGATAGAGGTTGTAGGCTTTGTCCATCATCTCATTACAGAAGCGGGGAGAATGGACTCAGCGCCACAGGTAAATCAGGAATTTCACAAAACTCACATTTTAAACAATCAGTTTCTCCCATCAGGTCATCTATAAAAACTGACAATAGGAAACCTCTGACAGAGGGACGATTTGAGAGACATACATCATCAACTGAGATGGCGGTGGGAAATGAGAACCTTCAGAGTACAGTGCACACAGTTAGCCTGAATAACAGAGGAAATGCTTGTCAAGAAGCCGGCTCGGGCAGTATTCATGAAGTATGTTCCACTGGTGACTCCTTCCCAGGACAACTAGGTAGAAACAGAGGGCCTAAGGTGAACACTGTGCCTCCATTAGATAGTATGCAGCCTGGTGTCTGTCAGCAAAGTGTTCCTGTAAGTGATAAGTATCTTGAAATAAAAAAGCAGGAGGGTGAGGCTGTCTGTGCAGACTTCTCTCCACTATTCTCAGACCATCTTGAGCAATCTATGAGTGGTAAGGTTTTTCAGGTTTGCTCTGAGACACCTGATGACCTGCTGGATGATGTTGAAATACAGGGACATACTAGCTTTGGTGAAGGTGACATAATGGAGAGATCTGCTGTCTTTAACGGAAGCATCCTGAGAAGGGAGTCCAGTAGGAGCCCTAGTCCTGTAACCCATGCATCGAAGTCTCAGAGTCTCCACAGAGCG'),
('NineBande',
'TGTGGCACAAATACTCATGCCAACTTATTACAGCATGAGAACAGCAGTTTATTACTCACTAAAGACAGAATGAATGTAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGCGCCAACAGAGCAGATGGGCTGAAAGTAAGGAAACATGTAATGATAGGCAGACTCCCAGCGAGAAAAAGGTAGATGTGGATGCTGATCCCCTGTATGGGCGAAAAGAACTGAATAAGCAGAAACCTCCATGCTCTGAGAGTCATAGAGATACCCAAGATATTCCTTGGATAATGCTGAATAGTAGCATTCAGAAAGTTAACGAGTGGTTTTCCAGAGGTGATGACATATTAACTTCTGATGACTCACACGATAGGGGGTCTGAATTAAATGCATTGAAAGTTTCAAAAGAAGTAGATGAATATTCTAGTTTTTCAGAGAAGATAGACTTAATGGCCATTAATCCTCATGATACTTTACAATTTGAAAGAGTCCAATTGAAACCAGCAGAGAGTAACATCAAAGATAAAATATTTGGGAAAACCTATCATAGGAAGGCAAGCCTCCCTAACTTGAGCCACATAACCCGATTTATAGGAGCTATTGCTGCAGAGCCCAAGATAACACAAGAGCATTCCCTCCAAAATAAAATAAAGCGTAAAAGGGCATCAGGCCTTCGTCCTGAGGATTTATCCAAGAAAGTAGATTTGACAGTTCAAAAAACCCCTGAAAAGATAAATCAGGGAACTGACCAAATGGAGCAGAATGATCCAGTGATGAATATTGCTAATAGTGGTCATGAGAATGAAACAAAAGGTGATTGTGTTCAGAAAGAGAAAAATGCTAATCCGACAGAATCATTGGGAAAAGAATCTTTCAGAACTAAAGGCGAACCTATAAGCAGCAGTATAAGCAATATGGAACTAGAATTAAATATTTTAAATTCAAAAGCATCTAAGAAGAATCCGAAGAGGATGTCCACCAGGCATATTCATGCACTTGAACTAGGCAGTAGAAATCCAAGCCCACCTAATCATACTGAACTACAAATTGATAGTTGTTCTAGCATTGAAGAGATAGAGAAAATAAATTCTAACCAAAAGCCAATCAGACACAACAGAATGCTTCAACTCACGAAAGAAAAAGAAACCACAACTGGAGCCAAAAAGAATAAGCCAAATGAACAAATAAGTGAAAGACATGCCAGTGATGCTTTCCTAGAACTTAAAAATGTAACTGATTTTCTTCCTAAATGTTCAAGTTCTGATAAACTTCAAAAATTTAATTCTAGCCTGCAAGGAGAAGTAGCAGAGAACCTAGAAACAATTCAAGTGTCTGATAGTACCAGGGACCCTGAAGATCTGGTGGTAAGTGGAGAAAAGTGTTTGCAAACTGAAAGATCTGCAGAGAGTACCGGTATTTCAGTGGTACCTGATACTGATTATGGCACTCAAGACAGTATCTCATTACTGGAAGCTGACACCCTGGGGAAGGCAAAAACAGCACTAAATCAACATGTGAGTCAGTATGTAGCAATTAGAAATGCCACTGAACTTTCCCATGGTTCTAAAGACACTAGAAATGACACTGAAGATTTTAAGGATTCATTGAGACATGAAGTTAACCACTCGAATCCAGAAAATGAATGTGCACACTCCAGGTTCTTAGGGAAACAAAGTCCAAAAGTCACCTTTGAATGTAGACATAAAGAAAATCAGGGGAAGAAAGAGTCTAAAAAACATGTGCAGGTAATTCACACAACTGCAGGCTTTCCTATAGTTTGTCAGAAAGATAAGCCAGGTGATTATGCCAAAGGTCAAGGAGTCTCTAGGCTTTGTCAGTCCTCTCAGGCCAGAGGCAATGAATCTGAACTCATTAATTCAAATGAACATGAAATTTCACAAAACCCAGATCAAATGCCATCACTTTCTCACATGAAGTCATCTGTTAAAACTAAATGTAAGGAAAACCTGTCAGAGGAAAAGTTTGAGGAACTTACAGTGTCACTTGAAAGAACAATGGTAAATGAGAACATTCAAAGTACAGTAAGCACAATTAGCCACAGTAACAGAGAAAACACTTTTAAAGAAGCCAGCTCAAGCAGTATTAATGAAGTAGGGTCCAGTGATGAGAACATTCAAGCAGAAGTAGGTAGAAACAGAGCACCTAAATTAAATGCTATGCTCAGATTAGGTCTTATGCAACCTGAAGTCTATAAGCAAAGTCTTCCTATAACCAATAAATATCCTGAAATAAAAAGTCAAGGAATTCGGGCTGTTGATATAGACTTCTCTCCACTAATTTCAGATAACCTACAACTACCTATGAATAGTTGTGCTTCCCAGATTTGTTCTGAGACACCTGATGACTTGTTAGATGATGATGAAATAAAGGAAAATAACTGCTTTGCTGAAAGTGACATTAAGGAAAGATCTGCTATTTTTAGCAAAACTGTCCAGAAAAGAGAGTTCAGAAGGAGCCCTAGCCCTTTAGTCCATACAAGTTTTGCTCAGGGTCACCAAAGAAAG'),
('DogFaced',
'TGTGGCACAAATACTCATGCCAACTCATTACAGCATGAGAACAGCAGTTTATTATACACTAAAGACAGAATGAATGTAGAAAAGACTGACTTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAGCAGAACAGATGGGTTGAAACTAAGGAAACATGTAATGATAGGCAGACTTCCAGCGAGAAAAAGGTAGTTCTGAATGCTGATCCCCTGAATGGAAGAATAAAACTGAATAAGCAGAAACCTCCATGCTCTGACAGTCCTAGAGATTCCAAAGATATTCCTTGGATAACACGGAATAGTAGCATACAGAAAGTTAATGAGTGGTTTTCCAGACGTGATGAAACATTAACTTCTGATGTCTTACTTGATGAGAGGTCTGAATCAAATGTGGTAGAAGTTCCAAATGAAGTAGATGGATACTCTGGTGCTTCAGAGGAAATAGCCTTAAAGGCCAGTGATCCTCATGGTGCTTTAATATGTGAAAGAGTTCACTCCAAATTGATAGAAAGTAATATTGAAGATAAAATATTTGGGAAAACATATCGGAGGAAAGCAAGCCTCCCTAACTTAAGCCACATAACTGAAATTACAAGAGCATCTGCTACAGAACCTCAGATAACACAAGAGTGCCCCCTCACAAATAAACTAAAACGTAAAAGAACATCAGGCCTTCATCCTGAGGATTTTATCAAGAAAATAGATTTGACAACTCAAAAAACTTCTGAAAATATAATTGAGGGAACTGACCAAATAGAGCAGAATGGTCATGTGATGAATAGTTCTAATGATGGTCATGAGAATGAAACAAAAGGTGATTATGTTCAGAAGAAGAAAAATACAAACCCAACAGAATCATTGGAAAAAGAATCTTTCAGAACTAAAGTTGAGTCTGTACCCAACAACATAAGCAATGTGGAACTAGAATTAAATATTCACGGTTCAAAAGCACTCAAGAAGAATCTGAGGAGGAAGTCCACCAGGCATATTCATGCACTTGAACTAGTCAATAGAAATTCAAGCCCACCTAATCATACTGAACTACAAATTGATAGTTGTTCCAGCAGTGAAGAACTGAAGGAAAAAAATTCTGACCGAATGCCAGACAGACACAGCAAAAAACTTCAGTTCGTAGAAGATAAAGAATCTGCAACTGGAGCCAAGAAGAACATGCCAAATGAGGCAATAAATAAAAGACTTTCCAGTGAAGCTTTTCCCGAATTAAATAACGTACCTGGTTTTTTTACTAATGGTTCAAGTTCTAATAAACGTCAAGAGTTTAATCCTAGCCTTCAAGGAGAAGAAATAGAGAATCTACGAACAATTCAAGTGTCTAATAGCACCAAAGACCCCAAAATTCTAATCTTTGGTGAAGGAAGAGGTTCACAAACTGATCGATCTACAGAGAGTACCAGTATTTTATTGGGACCTGAAACGGATTATGGCACTCAAGATAGTATCTCATTACTGGAATCTGACATCCCAGGGAGGGCAAAGACAGCACCAAACCAACATGCAGATCTGTGTGCAGCAATTGAAAACCCCAGAGAACTTATTCATGATTTTAAAGAAACTAGAAATGACACAGAGAGCTTTAAAGATCCATTGAGACATGAAGTTAACTCCTCAGACCCAGAAAAGGAATGTGCACACTCCAGGTCCTTGATAAAACAAAGTCCAAAAGTCACTCTTGAATGTGACCGAAAAGGAAATCAGGGAAAGAAAGAGTCTAACGAGCATGTGCAGGCAGTTTATACAACTATAGGCTTTCCTGGGGTTTCTGAGAAAGACAAACCAGGAGATTATGCCAGATATAAAGAAGTCTCTAGGCTTTGTCAGTCATTTCAGTCTAGAAGAAATGAAACTGAGCTCACTATTGCAAATAAACTTGGACTTTCACAAAACCCATATCATATGCCATCCATTTCTCCCATCAAGTCATCTGTTAAAACTATATGTAAGAAAAATCTGTCAGAGGAAAAGTTTGAAGAACATTCAATATTCCCTGAAAGAGCAATAGGAAATGAGACCATTCAAAGTACAGTGGGCACAATTAGCCAAAATAACAGAGAAAGCACTTTTAAAGAAGGCAGCTCAAGCGGTATTTATGAAGCAGGTTCCAGTGGTGAAAACATTCAAGCAGAACTAAGTAGAAACAGAGGACCAAAATTAAATGCTGTGCTTCAGTTGGGTCTCATGCAGCCTGAAGTCTATGAGCAAAGCCTTCCTCTAAGTAATAAACATTCTGAAATAAAAAGGCAAGGAGTTCAGGCTGTTAATGCAGATGTCTCTCCACAAATTTCAGATAACTTAGAGCAACCTATGAACAGTAATATTTCTCAGGTTTGTTCTGAGACACCGGATGACCTGTTAAATGATGACAAAATAAAGGACAATATCAGCTTTGATGAAAGTGGCATTCAGGAAAGATCTGCTGTTTTTAGCAAAAATGTCCAGAAAGGAGAATTCAGAAGGAGCCCTAGTCCCTTAGCCCATGCAAGTTTGTCTCAAGGTCGCCCAAGAAGG')]
Handling overloaded FASTA sequence labels#
The FASTA label field is frequently overloaded, with different information fields present in the field and separated by some delimiter. This can be flexibly addressed using the LabelParser
. By creating a custom label parser, we can decide which part we use as the sequence name. We show how to convert a field into something specific.
from cogent3.parse.fasta import LabelParser
def latin_to_common(latin):
return {"Homo sapiens": "human", "Pan troglodtyes": "chimp"}[latin]
label_parser = LabelParser(
"%(species)s", [[1, "species", latin_to_common]], split_with=":"
)
for label in ">abcd:Homo sapiens:misc", ">abcd:Pan troglodtyes:misc":
label = label_parser(label)
print(label, type(label))
human <class 'cogent3.parse.fasta.RichLabel'>
chimp <class 'cogent3.parse.fasta.RichLabel'>
RichLabel
objects have an Info
object as an attribute, allowing specific reference to all the specified label fields.
from cogent3.parse.fasta import LabelParser, iter_fasta_records
fasta_data = [
">gi|10047090|ref|NP_055147.1| small muscle protein, X-linked [Homo sapiens]",
"MNMSKQPVSNVRAIQANINIPMGAFRPGAGQPPRRKECTPEVEEGVPPTSDEEKKPIPGAKKLPGPAVNL",
"SEIQNIKSELKYVPKAEQ",
">gi|10047092|ref|NP_037391.1| neuronal protein [Homo sapiens]",
"MANRGPSYGLSREVQEKIEQKYDADLENKLVDWIILQCAEDIEHPPPGRAHFQKWLMDGTVLCKLINSLY",
"PPGQEPIPKISESKMAFKQMEQISQFLKAAETYGVRTTDIFQTVDLWEGKDMAAVQRTLMALGSVAVTKD",
]
label_to_name = LabelParser(
"%(ref)s",
[[1, "gi", str], [3, "ref", str], [4, "description", str]],
split_with="|",
)
for name, seq in iter_fasta_records(fasta_data, label_to_name=label_to_name):
print(name)
print(name.info.gi)
print(name.info.description)
NP_055147.1
10047090
small muscle protein, X-linked [Homo sapiens]
NP_037391.1
10047092
neuronal protein [Homo sapiens]
Using a third-party plugin for sequence storage#
Sequence collections and alignments have a .storage
attribute which holds the underlying sequence data and provides basic functions for obtaining it. Users can install a third-party plugin which is customized for different types of sequence data. The following examples require you install the cogent3-h5seqs
plugin. This project provides alternative storage for both unaligned sequences and for alignments.
$ pip install cogent3-h5seqs
Selecting an alternate storage backend#
Specify the storage using the storage_backend
argument.
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs(
"data/long_testseqs.fasta", moltype="dna", storage_backend="h5seqs_aligned"
)
aln
0 | |
DogFaced | TGTGGCACAAATACTCATGCCAACTCATTACAGCATGAGAACAGCAGTTTATTATACACT |
HowlerMon | ......................G...........................G...CT.... |
Human | ......................G...............................CT.... |
Mouse | .........G..G.........G...........C.....C............GCT..T. |
NineBande | .........................T............................CT.... |
5 x 2532 (truncated to 5 x 60) dna alignment
That’s it!
type(aln.storage)
cogent3_h5seqs.AlignedSeqsData
For the cogent3-h5seqs
package you specify a different storage backend for unaligned sequences.
from cogent3 import load_unaligned_seqs
seqs = load_unaligned_seqs(
"data/long_testseqs.fasta", moltype="dna", storage_backend="h5seqs_unaligned"
)
type(seqs.storage)
cogent3_h5seqs.UnalignedSeqsData
Set the default storage#
You can set the default storage process-wide, so you don’t need to use the storage_backend
argument.
import cogent3
cogent3.set_storage_defaults(
unaligned_seqs="h5seqs_unaligned", aligned_seqs="h5seqs_aligned"
)
aln = cogent3.get_dataset("brca1")
type(aln.storage)
cogent3_h5seqs.AlignedSeqsData
When you apply operations, the new backend storage setting is applied.
coll = aln.degap()
type(coll.storage)
cogent3_h5seqs.UnalignedSeqsData
Note
To revert to the cogent3
defaults, use the reset
argument.
cogent3.set_storage_defaults(reset=True)