Aligned#

class Aligned(data: AlignedDataView, moltype: MolType, name: str | None = None, annotation_db: SupportsFeatures | None = None)#

A single sequence in an alignment.

Attributes:
annotation_db
data
gapped_seq

Returns Sequence object, including gaps.

map
moltype
name
seq

the ungapped sequence.

Methods

annotate_matches_to(pattern, biotype, name)

Adds an annotation at sequence positions matching pattern.

gap_vector()

Returns gap_vector of positions.

make_feature(feature, alignment)

returns a feature, not written into annotation_db

parent_coordinates([seq_coords])

returns seqid, start, stop, strand on the parent sequence

slice_with_map

Notes

This is a wrapper around a AlignedDataView. This class performs any complenting needed. It can be cast directly to a string or numpy array, e.g. numpy.array(<aligned instance>) returns a numpy unsigned 8-bit integer array.

annotate_matches_to(pattern: str, biotype: str, name: str, allow_multiple: bool = False)#

Adds an annotation at sequence positions matching pattern.

Parameters:
pattern

The search string for which annotations are made. IUPAC ambiguities are converted to regex on sequences with the appropriate MolType.

biotype

The type of the annotation (e.g. “domain”).

name

The name of the annotation.

allow_multiple

If True, allows multiple occurrences of the input pattern. Otherwise, only the first match is used.

Returns:
Returns a list of Feature instances.
property annotation_db#
property data: AlignedDataView#
gap_vector() list[bool]#

Returns gap_vector of positions.

property gapped_seq: Sequence#

Returns Sequence object, including gaps.

make_feature(feature: FeatureDataType, alignment: Alignment) Feature#

returns a feature, not written into annotation_db

property map: IndelMap#
property moltype: MolType#
property name: str#
parent_coordinates(seq_coords=False)#

returns seqid, start, stop, strand on the parent sequence

Parameters:
seq_coords

if True, the coordinates for the unaligned sequence

property seq: Sequence#

the ungapped sequence.

slice_with_map(span: FeatureMap) tuple[ndarray, ndarray]#